

Enhanced Ferroelectric Properties in Highly Epitaxial and Fatigue-Resistant PZT Thin Films Deposited Using Dual-laser Ablation

Devajyoti Mukherjee, Robert Hyde, Tara Dhakal, Hariharan Srikanth, Pritish Mukherjee, and Sarath Witanachchi

Abstract

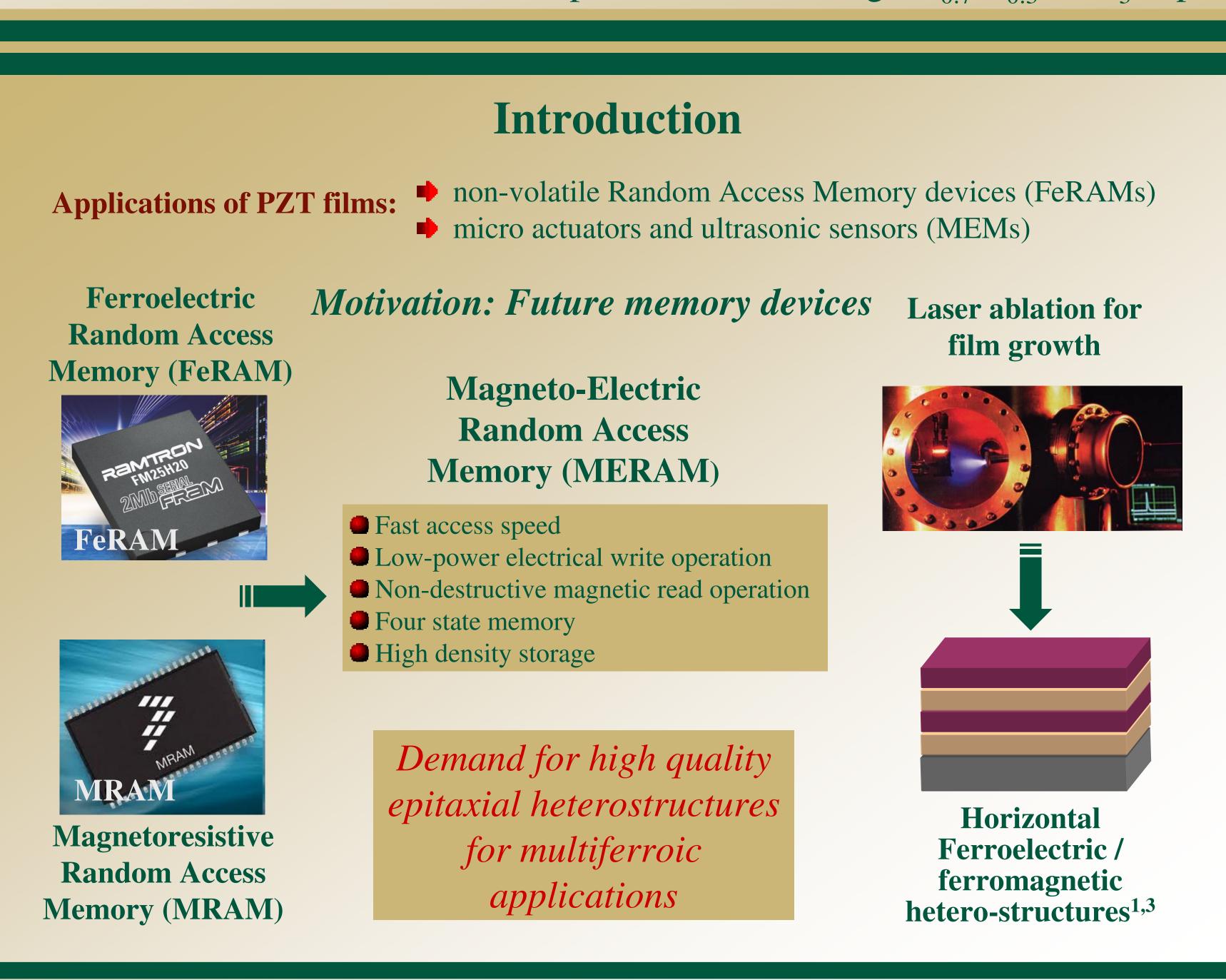
Epitaxial PbZr_{0.52}Ti_{0.48}O₃ (PZT) films were deposited on single crystal MgO (100) and SrTiO₃ (STO) (100) substrates using a dual-laser deposition (DLD) process. This technique combines a pulsed KrF excimer and CO₂ laser outputs by overlapping them spatially and synchronizing them temporally. The PZT films made using DLD process exhibited ferroelectric properties much superior to those of the single-KrF laser ablated films. Hysteresis loops with higher values of remnant polarizations and coercive fields were observed. Optimum coupling of the combined laser energies produced enhanced plume excitation and higher ionization of the background ambient O₂ which eventually reduced the defects related to O₂ vacancies within the films. This not only reduced the leakage through the PZT capacitors but also improved their fatigue response. AFM surface analysis of the PZT films grown using DLD revealed a smoother surface with root mean square roughness (Rrms) value of 1.6 nm compared to 11.5 nm for single-KrF laser ablated films. Further the broader transverse expansion of plume in DLD allowed for the deposition of particulate free films that were uniformly thick over a larger area making them ideal for incorporation in multilayered multiferroic structures. The PZT capacitors made using La_{0.7}Sr_{0.3}MnO₃ top and bottom electrodes were highly resistant to fatigue even after 10⁹ cycles of polarization switching.

Particulates on films

PZT_{SL}-STO (KrF 2 J/cm²) 5 μm PZT_{SL}-STO (KrF 5 J/cm²) 5 μm

SEM images of single laser PZT

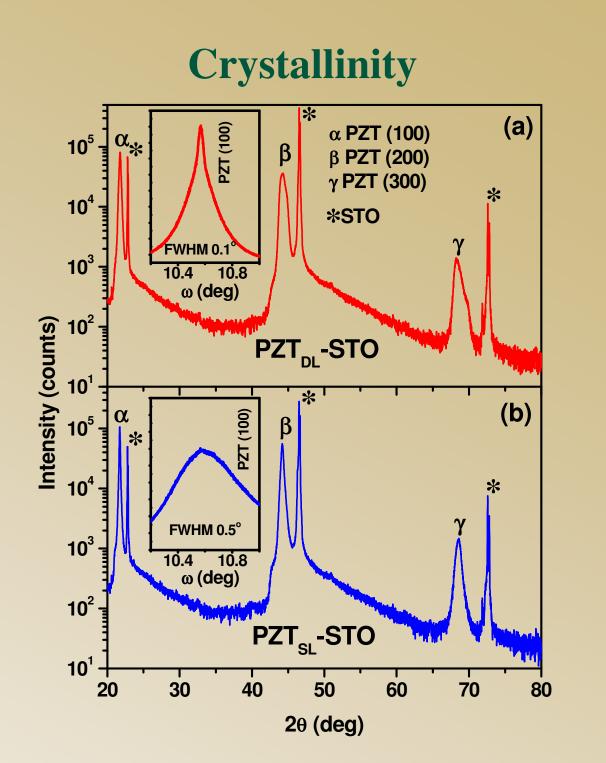
films on STO substrates (PZT_{SI})


at (a) low fluence of 2 J/cm² and

(b) high fluence of 5 J/cm², and

(c) dual laser film (PZT_{DI}), (d)

one of the "splashed" particulates


on PZT_{SI} film ejected from target.

Results Structural properties

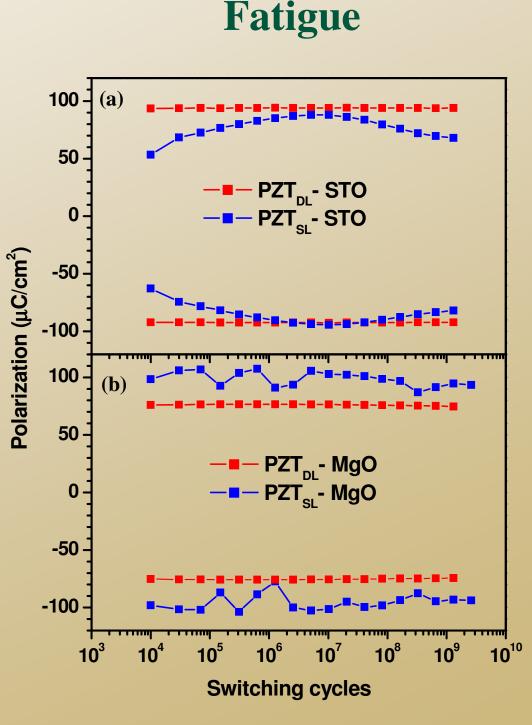
Surface morphology (a) (b) $R_{rms} = 11.5 \text{ nm}$ $R_{rms} = 1.6 \text{ nm}$ $R_{rms} = 1.6 \text{ nm}$ $R_{rms} = 1.6 \text{ nm}$

AFM images of PZT films on STO substrates deposited using (a) dual-laser (PZT_{DL}-STO), and (b) single-laser (PZT_{SL}-STO) ablation, respectively.

XRD patterns of PZT films on STO substrates grown by (a) dual and (b) single-laser ablation, respectively. Insets show the rocking curves about the PZT (100) peak.

Ferroelectric properties

PZT_{SL}-MgO 64


PZT_{DL}-MgO 96

P-E hysteresis loops for PZT fand single laser ablation (PZ)

P-E hysteresis loops for PZT films deposited using DLD (PZT_{DL}) and single laser ablation (PZT_{SL}) on STO and MgO substrates.

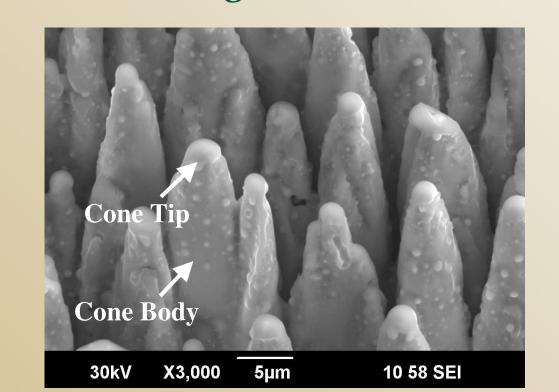
Leakage --- PZT_{sL}- MgO --- PZT_{sL}- MgO --- PZT_{sL}- STO ---- PZT_{sL}- STO --- PZT_{sL}-

Fatigue tests at 10 kHz using +/9 V read/write voltages for LSMO/PZT/LSMO capacitors.

Summary

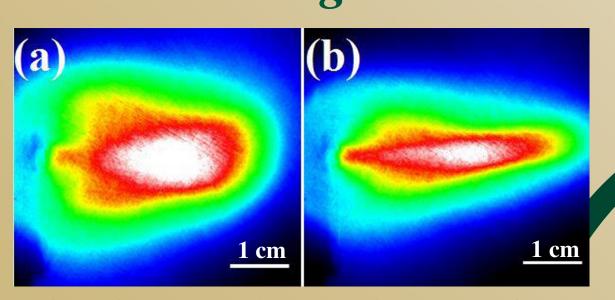
- Successful growth of stoichiometric, particulate-free, and smooth PZT films with the desired perovskite structure and no impurity phases using dual laser deposition technique.
- Enhanced ferroelectric properties with higher remnant polarization and better fatigue response desired for device application.
- DLD as a generalized technique for all multi-component thin film growth where a highly volatile element leads to non-stoichiometric transfer of materials.

77 2.45 44.4 0.27


. D. Mukherjee, T. Dhakal, R. Hyde, P. Mukherjee, H. Srikanth, and S. Witanachchi, J. Phys. D: Appl. Phys. **43**, 485001 (2010).

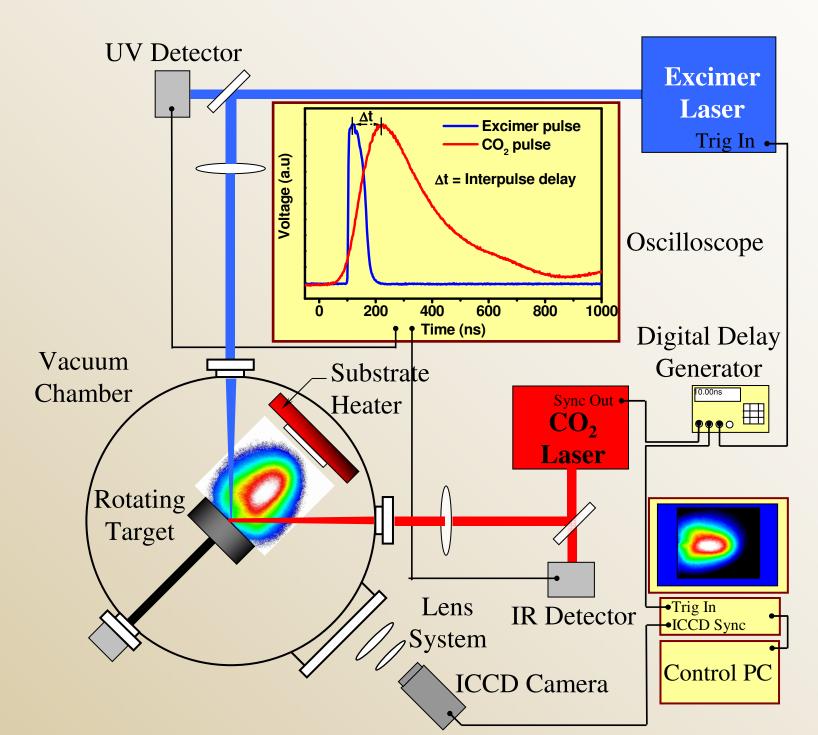
References

- 2. D. Mukherjee, R. Hyde, T. Dhakal, H. Srikanth, P. Mukherjee and S. Witanachchi, Mater. Res. Soc. Symp. Proc. 1199, 37 (2010).
- 3. T. Dhakal, D. Mukherjee, P. Mukherjee, R. Hyde, M. H. Phan, H. Srikanth, and S. Witanachchi, J. Appl. Phys. 107, 053914 (2010).
- 4. S. Witanachchi et al., Appl. Phys. Lett. **66**, 1469 (1995).


Experiment

Preferential evaporation of highly volatile Pb in PZT leads to non-congruent ablation²

SEM image of conical structures formed on a PZT target surface after repeated ablation by KrF excimer laser.


Plume diagnostics

Time integrated ICCD images of the visible emission spectra of laser-induced plumes in 500 mT ambient O₂ for (a) dual-laser ablation, and (b) the KrF single-laser ablation.

Complications in laser ablation of PZT:2

- At low laser energy Pb deficiency in PZT films degrade the ferroelectric properties
- At high laser energy undesirable particulates on films

Dual Laser Deposition
(DLD) System⁴

The broader transverse expansion of the plume in DLD (28.0 mm FWHM) compared to single–laser (18.7 mm FWHM) allowed for the growth of more uniform film over a larger area.

